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ABSTRACT

Ports want to ensure safe and reliable loading operations for all ships. Increase in ship sizes, especially
container ships, potentially cause unsafe mooring situations. For ships moored at quay walls, there is also a
lack of international guidelines for mooring arrangements. This paper presents a case study for a moored
containership being passed by a vessel of identical dimensions. The behaviour of the moored ship is simulated
using UGent’s time-domain mooring software Vlugmoor. Starting from a well-balanced arrangement used in
daily operation, three optimisation steps are presented, aiming at lowering the ship motions, which are critical.
The first step explores the impact of changing line positioning to reduce line length disparity and improve
efficiency in critical force directions. The second step considers a lower fore mooring deck to reduce line
steepness, as well as additional winches below the bridge and funnel. The third step proposes replacing medium
stiff lines with a very stiff HMPE line, combined with an elastic tail. The effect of these optimisation steps on
the ship motions are presented and compared with predictions based on efficiency parameters, expressing the
capacity of the configuration to deal with positive and negative surge forces. It is shown that applying these
optimisation steps can significantly improve the safety of a moored container ship during a ship passage.

NOMENCLATURE
At [m?] frontal wind surface MBL [ton] minimum Breaking Load
Al [m?] lateral wind surface n [1] number of lines
Als [m?] A, including quay shielding Oxysz [] earth fixed coordinate system
A [varies] added mass Oxyz [] local bollard coordinate system
B [m] beam X [varies] general motion vector
B [varies] damping T4 [m] design draft
Cs [] block coefficient Ts [m] scantling draft
C [varies] restoring term ukc [%] under keel clearance
D [m] depth X [m] surge motion moored ship
exp [1] positive longitudinal efficiency Xneg [m] negative surge motion amplitude
exn [] negative longitudinal efficiency Xp [m] position of passing ship in Oy,
exp’ [] exp, including line elasticity factor Xpos [m] positive surge motion amplitude
exn’ [] exn, including line elasticity factor Xp [ton] surge force passing ship
Fpas [varies] general ship passing force yM [m] lateral motion midship
Frel [] relative line force YA [m] lateral motion aft perp.
Flines [] reaction force lines YF [m] lateral motion fore perp.
Flenders [ ] reaction force fenders Yoa [ton] transversal force passing ship aft perp.
4 [m] line length Ypr [ton] transversal force passing ship fore perp.
Lref [m] reference line length o [°] line angle in horizontal plane
Ltail [m] mooring tail length p [°] line angle in vertical plane
Loa [m] length overall Ebr [%] breaking strain mooring line
Lpp [m] length between perpendiculars S [] dimensionless position passing ship
EN equipment number MC mooring configuration
IACS  Int. Association of Classification Societies OCIMF Oil Companies Int. Maritime Forum
IMO International Maritime Organisation PIANC World Association for Waterborne Trans. Infra.
HMPE  high-modulus polyethylene TEU twenty foot equivalent unit

ULCV  ultra large container vessel



1 INTRODUCTION

Ship sizes keep on increasing, and ports have a hard time keeping up. When quays and jetties want to
welcome large (design) vessels, ensuring the moored vessels’ safety is an essential step in the feasibility study
of a project. The mooring system needs to counteract the external effects posed by wind, current, passing ship
and wave effects. In ports sheltered from (direct) wave action, the main concern is the effect of wind. Due to
often limited dimensions of channels and docks however, ships pass the moored ships at close distances. In
order to fulfil manoeuvring and traffic flow requirements, a minimum passing speed is often needed.

It is important that ship have adequate mooring equipment on board and that berths are provided with
sufficient mooring points. For oil tankers, the jetty design and mooring plan is fixed, with limitations for
maximum line angles, based on OCIMF guidelines [1]. In this approach, it is assumed that there is sufficient
distance between the ship’s side and the mooring points, allowing for efficient breast lines to be applied. For
most dry bulk operations however, the ship is moored at a quay wall equipped with cranes/conveyor belts to
(un)load the ships. This limits the available space for mooring points to a zone of only a few meters, between
the quay face and crane tracks. The dynamics of the system change as well, with the passing ship surge force
being dominant when considering a quay wall, compared to large sway forces for the open water (jetty) case.

For mooring line properties, international guidelines are issued by IMO and IACS. A first set of
recommendations, dating from 2005 [2] [3], were updated in 2016 [4]. The latest formulation however fails to
set demands for line elasticity, which means that very elastic lines are in use worldwide. These result in large
motions of the moored ships under external loads.

The current research focuses on the mooring equipment (winches, mooring lines) in use on large
containerships, where optimisation procedures are proposed to enhance the safety of a moored containership
under a passage by an identical ship. A case study, based on open data from the magazine Significant Ships [5]
for the ULCV UASC Barzan, is presented. The behaviour of the moored ship is simulated using the UGent
time-domain mooring software Vlugmoor, showing that the surge motions of the moored ship are critical.

Three optimisation methods are proposed that aim to lower the ship motions, starting with an optimal
spatial positioning of the lines, using the existing equipment on board Barzan and a representative container
quay layout. In a second approach, the positioning of the winches is examined, without interfering with the
cargo space. For example, the winches on the forecastle deck are repositioned to a lower deck level, in order
to reduce the steepness of the lines. In another example, two pairs of winches are added underneath the funnel
and bridge, for extra spring lines to cope with surge forces. A third proposition involves using very stiff HMPE
lines, in combination with elastic tails, in order to limit the motions of the moored ship.

A last section offers a method to compare and optimise mooring configurations based on so-called
efficiency parameters. This method has already been presented in [6], but it is now tested for all the
optimisation cases, and expanded to cope with lines with varying elasticity.

2 DESIGN SHIP CASE STUDY - MOORING ARRANGEMENT

The optimisation study is presented for the case of a moored container ship, under the passage of a
container ship of identical size. The dimensions of ship and properties of the mooring equipment on the moored
vessel are based on open data to reflect what is actually found on the vessel. A typical mooring arrangement,
as well as a comparison of the equipment with existing guidelines, are presented.

2.1 Mooring arrangement 19,870 TEU ship
The moored vessel is the UASC Barzan, a 19,870 TEU containership [5]. The main properties can be
found in Table 1. Note that the wind surfaces, A, and A are given for the design draft, estimated based on the

general arrangement plan which is present in the document.

Table 1: Main dimensions UASC Barzan.

Variable [unit] Value Variable Value
Loa [M] 400.0 Ta [m] 14.5
Lpp [m] 383.0 Ts [m] 16.0
B [m] 58.6 Ar [m?] 3146
D [m] 30.6 Al [m?] 17583




There are 16 single drum winches on board the ship, 8 on the (lower) aft deck and 8 on the forecastle
deck. A common configuration at a container quay is given in Figure 1, defined as configuration MCO. The
bollards on the quay are positioning every 20 m and two lines can be safety attached on each. 9 high capacity
fenders, with negligible friction, are added to restrain the ship in the negative y-direction. As the fender loads
are limited in these passing ship cases, they are not further discussed in this paper. The quay level is set at
+2.00 m, relative to the water surface level, which is the reference plane for the (z) coordinates in this paper.
This low quay level leads to steep lines, which are not well suited to cope with forces in the horizontal plane.

The container ship is modelled at scantling draft (16.00 m), leading to aft and forecastle deck levels of
+9.00 m (estimated based on general arrangement) and +14.60 m respectively. Each mooring line is denoted
by three spatial parameters (Figure 2). The angles in the horizontal and vertical plane are a and 3, respectively.
The total line length (€), the sum of length between fairlead and bollard on quay and between fairlead and
winch on board, determines the response of the line. A short line attracts large loads, with long lines being
loaded less. o, B and £ for lines are given in Table 2.

The actual line properties are not specified in [5]. A monitoring campaign performed in [7] shows that
the line types are variable, even within the same ‘class’ of 400 m long ships. The breaking strength, MBL,
seems to be within a narrow range, with 140 tons as a representative value. The elasticity on the other hand is
highly variable, ranging from elastic nylon lines to stifft HMPE lines. In the reference situation, a medium stiff
line with elongation at break of 15% (&) is considered. This is compared with the use of stiff line (HMPE)
and elastic tail, as an optimisation step of the mooring configuration.
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Figure 1: Mooring configuration ‘MCO’ for design vessel; Top : Top view ; Bottom : Profile view
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Figure 2 : Definition of mooring line angles (a.,f), local bollard coordinate system O’_¢ y- »
— Image courtesy of Antwerp Port Authority.

Table 2: Mooring line angles (a,f) and length ¢ for configuration MCO (Figure 1).

Line n° a [°] AN £ [m] Line n° a [°] p1° £ [m]
1 45 6 76 9 20 27 52
2 41 6 72 10 21 20 45
3 50 9 53 11 102 40 42
4 44 9 48 12 74 27 34
5 65 17 30 13 137 17 51
6 55 22 24 14 131 15 56
7 176 10 88 15 143 11 74
8 176 10 51 16 142 8 94




2.2  Mooring line guidelines

The basis for the determination of the number of lines (nines) and MBL is formed by the definition of
the equipment number (EN), postulated for quantifying towing and anchoring equipment [3]. In the 2005
guidelines, a relationship between EN and niines, MBL is expressed in tabular form. Based on the properties of
the Barzan (Table 1 and [5]), the EN number is 10,980, hence 16 lines are required, with an MBL of 736 kN
(= 75 ton). The MBL is much lower than the lines used on board, with an MBL of 140 tons. These 2005
guidelines are thus not representative for large (container) ships. This is however not surprising, as the EN was
defined for towing and anchoring, where the frontal wind surface is more important.

The 2016 guidelines explicitly incorporate the lateral wind surface, A, in the calculation of the MBL
and the number of lines. The sum of the number of head and stern lines is given by Eq. (1)

Nhead+stern = 83 107* "As +6[4] (1)

For an unshielded quay, 21 lines are required. If shielding is present, with wind coming from land, the
hull can be assumed to be shielded over a height of 3 m (defined here as Ais = 16434 m?), still requiring 20
lines. For vessels with an EN above 5000, 4 springs are required additionally. The demanded MBL for all lines
is given by Eq. (2). Lines with MBL of 1993 kN are recommended here.

MBL = 0.1- A5 + 350 (kN) [4] (2)

It is clear that the demand of 24 lines with 1993 kN is far from met. Of course, the Barzan was built before
this document was published. It remains to be seen however if newly built vessels will have 24 winches on
board. It is also surprising that the new rules fail to incorporate the elasticity of lines as a design parameter. It
will become clear in the next section that this is a critical parameter when assessing dynamic ship behaviour,
certainly when ship motions form the limiting factor.

2.3 Mooring arrangement guidelines

The mooring arrangement should aim to keep all line forces below OCIMF limits and restrain the ship
in the horizontal plane as much as possible. From this definition, it becomes obvious that steep lines need to
be avoided. OCIMF [1] sets a maximum of 25° for the vertical angle (B, Figure 2). For the configuration MCO,
this means that lines 9,11 and 12 exceed this criterion.

In order to keep the vessel moored safely, the mooring lines need to counteract external forces, which
work in surge (x) and sway (y) direction (see axis system Figure 2). Spring lines are positioned along the quay
wall and counteract surge forces, with angles + 10° from the longitudinal axis (OCIMF). Breast lines restrain
the ship in the transversal direction, defined as having angles + 15° to the axis perpendicular on the quay.
When applying this definition to Table 2, one breast line (11) and two spring lines (7 and 8) are present. All
other lines take up forces in surge and sway, but are less efficient. Due to the limitations of having only bollards
close to the quay face, it is impossible to comply with OCIMF definitions. An alternative method to evaluate
a mooring arrangement of a large ship at a quay wall is thus required. The current paper presents an integrated
approach, which aims at evaluating the mooring configuration as a whole, rather than looking at the individual
lines, allowing for assessment, comparison and improvement of the mooring arrangement.

3 MOORING ARRANGEMENT OPTIMISATION

In [6], a set of efficiency parameters has been defined and used to evaluate the mooring arrangement.
These parameters are re-used here to quantify mooring line optimisation steps, based on simple rules of thumb.
The present study focuses on passing ship effects. A numerical calculation example is first shown, to motivate
the focus on longitudinal efficiency of the configuration. This assumption is confirmed later on (section 5.2),
when assessing the behaviour of the moored ship and comparing with criteria for forces and motions.

3.1 Passing vessel effect

The primary pressure wave travelling with the passing ship affects the moored ship substantially [8].
These forces are calculated here with the numerical potential package RoPES [9]. For detailed discussion of



the passing ship effect and calculation procedure and its limitations, refer to [10][11][12]. In this study, the
passing ship has identical dimensions to the moored ship (Table 1), passing at two times beam distance
(measured side-to-side), at a forward velocity of 6 knots. The hull shape of the Barzan is not given in [5],
which is why a similar hull file in the possession of UGent is used here to calculate passing ship forces, as well
as moored ship hydrodynamics. This hull has a block coefficient (Cg) of 0.74 at scantling draft, which differs
from the Barzan, [5], having a Cg of 0.70 at design draft. The forces acting on the moored ship are depicted in
Figure 3. They are given as a function of the position of the passing ship (Eq. (3), see Figure 4).

X

g=—1 (3)

Loa

The longitudinal force is significantly larger than the transversal forces, which are presented as lateral
force at fore (Y,r) and aft (¥,a) perpendicular . Note that the forces given in Figure 3 are corrected for shallow
and confined water, according to Talstra and Bliek [10]. For this exercise, the total section width equals eight
times the beam of the ship (Figure 4) and the water depth is 20 m (ukc of 25%). Further discussion of the
modelling of high blockage cases in RoPES are outside of the scope of this paper, but will be the focus of
future research, including validation using model tests.
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Figure 3 : Passing ship forces in function of & (RoPES, with correction factor [10])
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3.2 Efficiency parameters

In [6], a set of four efficiency parameters, based on the mooring line angles (a,f) and the line length (¥),
has been defined. Only the longitudinal efficiency parameters are discussed here. For the transversal efficiency,
which becomes more relevant in open water (jetty) passing cases and wind events, reference is made to [6].
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Eq. (4-5) express the capacity of the configuration to deal with positive (ex,) and negative (ex,) external
forces. £, is the average length of all the lines. The elasticity of the lines, which is a vital parameter, is not
yet included in these formulae. This will be done when discussing the mooring simulation results.

3.3 Rules of thumb for increase of mooring arrangement performance

Optimising a mooring line configuration at a quay wall is mostly case specific, as the bollard position,
quay level, design vessel(s) etc. differ for each terminal. There are however some basic principles which apply
to all cases:

1. A mooring line is essentially a spring, building up force through elongation. Short lines will thus
build up forces quickly compared to long lines. Lines working in the same sense (breast or spring),
should be of similar length. Always take into account line lengths on deck.

2. Long lines make the configuration more elastic, short lines create more stiffness. Note that this also
influences the eigenperiod of the system.

3. The mooring configuration should be balanced at all times, as OCIMF indicates. The longitudinal
efficiencies, in positive and negative sense, should thus be similar.

4. The terms in cos (o) and sin (a,f) are squared in Eq. (4-5), underlining the importance of spring line
orientation along the quay face (o~ 0° or 180°).

3.4 Proposed optimisation procedure

In the current paper, three different optimisation procedures are presented, starting from the
configuration ‘MCQ’, given in Figure 1. All three aim at limiting the ship motions and mooring line forces.
1. Spatial arrangement of the mooring lines.
2. Position of winches on deck and possibility of added winches, without losing cargo space.
3. The use of stiff lines in combination with an elastic tail
All mooring configurations which are presented here in detail, are given in the attachment.

3.4.1 Procedure 1 : Optimisation of spatial arrangement

Firstly, the spatial configuration of the lines is enhanced changing only the line positions. In MCO, the
aft springs have different lengths, 88 m and 52 m for lines 7 and 8 (Table 2). By moving the bollard to which
the longer line (line 7) is attached, line lengths become more similar (Figure 5).

Figure 5 : Optimisation of spatial arrangement : Repositioning aft spring (MC1).

Crossing of the lines optimises the line angles (a closer to 0,180° for springs and 90° for breasts). In
MC2, the aft lines are crossed (Figure 6); whereas in MC3, the fore lines are crossed (Figure 6). MC4 combines
both crossing fore and aft lines. Note that under tidal differences and/or draft changes, crossing of lines might
not always be possible.
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Figure 6 : Optimisation of spatial arrangement
Left : Crossing aft lines (MC2 and MC4); Right : Crossing fore lines (MC3 and MC4).
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3.4.2 Procedure 2 : Winch positioning and number of winches
Container ships have very similar winch and fairlead positions, certainly within the same ‘TEU class
They are positioned fore and aft of the ship, maximizing cargo space. There are however alternative winch
positions which do not impact cargo space, but could greatly benefit the response of the mooring system.
Arrangement MCS5 (Figure 7), shows a lower fore mooring deck, which limits the steepness of the fore lines (j3).
The winches are positioned on a lower deck level assumed to be at level +9.00 m (same as aft mooring deck).
Of course, the structural integrity, as well as the operational feasibility needs to be checked before putting this
idea in practice. Combining a lower and higher fore mooring deck, would allow to install additional winches.
In mooring configuration MC6 (Figure 8), two extra pairs of winches are added underneath the funnel
and bridge house (again at +9.00 m), where no container stacks are present. By doubling the amount of spring
lines, the capacity to deal with longitudinal forces is highly increased. The lower deck position also ensures

that the line angle steepness is lowered compared to forecastle deck positions.
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Figure 7 : Mooring configuration MC5 : Lower fore mooring deck (level +9.00 m)
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Figure 8 : Mooring configuration MC6 : addition of winches underneath funnel and bridge

3.4.3 Procedure 3 : Line properties
Innovative line manufacturers are constantly seeking ways to produce lines that suit industry most
driven by the new demands for high quality lines stated in OCIMF’s MEG4 [1]. For container ships, a variation
in the elasticity of lines on board ships is observed. A case study example shows the gains that can be achieved
using higher-quality lines, which would be beneficial for all. This is shown in the simulations by changing the
lines from a medium stiff line (denoted as linear line 1 (L1)) with breaking strain of 15% to a combination of
a stiff HMPE line (linear line 2 (L.2)) and a non-linear elastic tail (non-linear line 1 (NL1)). The tail length is

11 m (€4;;). The properties of these lines are shown in Figure 9.
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Figure 9 : Line properties linear deforming lines L1 and L2, non-linear deforming line NL1



3.4.4 Optimisation overview table

Table 3 below presents an overview of nine different simulations, arising from the three methods
outlined in the Section 3.4.1 — Section 3.4.3. An additional arrangement, MC7, combines crossing aft lines
(MC2), lower fore mooring deck (MC5), two additional springs (MC6) and stiffer lines (L2 + NL1), ina best
possible optimisation result. Table 3 gives a short description of the action, the line type and the efficiency
parameters. Note that a change of line type (L1 to L2 + NL1) does not affect the efficiency parameters defined
in Eq. (4-5), as the elasticity is not included in the formulation. This is discussed in section 5.3.

Table 3 : Mooring configurations and efficiency parameters exp, €xa.

Config Action Line exp €xn
type

MCO0 Reference configuration L1 4.60 3.44
MC0 Stiffer lines L2 +NL1 4.60 3.44
MC1 Change position aft spring L1 4.50 3.47
MC2 Crossing aft lines L1 4.69 3.53
MC3 Crossing fore lines L1 4.61 4.15
MC4 Crossing fore + aft lines L1 4.70 4.25
MC5 Lower fore mooring deck L1 5.64 4.60
MC6 2 additional spring pairs L1 6.50 5.52
MC7 Action MC2+MC5+MC6 L2 +NL1 7.68 6.84

4 VLUGMOOR CALCULATION

VlIugmoor is a dynamic mooring analysis (DMA) tool, developed at Ghent University, calculating the
behaviour of moored ships based on input from RoPES (section 3.1) and a seakeeping tool, in this case
Hydrostar [13]. For the specific case of the behaviour under passing ship effects, the equations of motion are
solved in 4DOF (surge, sway, yaw and roll), with coupling between sway and yaw. Eq. (7) shows the general
representation of the equation of motion

(m + a) ‘X+b-X+c-X= Fpas(t) + Flines(t) + Ffenders(t) (7)

In Eq. (7), X represents a general motion vector. m represents the mass, with a being the added mass. b
is the hydrodynamic damping and ¢ represents the linear restoring terms. On the right hand of the equation,
the sum of the external forces is given. The passing vessel force (Fyas) is in this case case the disturbing force,
with Fiines and Frengers being the response of the mooring system. Validation is found through observations and
measurements at project sites where studies have been performed. One validation effort has been published so
far, based on full-scale measurements for the Port of Antwerp (Van Zwijnsvoorde et al, 2018), where good
agreement has been observed between measured and simulated results.

5 SIMULATION RESULT MOORING OPTIMISATION

The behaviour of the moored ship, under the ship passage, is modelled using VIugmoor. The outputs of
the simulation are motions of the moored ship, as well as line and fender forces, at each time step. These are
evaluated based on criteria for each variable. The current section elaborates on these criteria, gives an example
of VIugmoor output and shows the simulation results for all configurations presented in Table 3.

5.1 Criteria

The results of the mooring simulations need to be checked against criteria for motions and forces. Line
force limits can be found in [1], set at 50% MBL for synthetic lines. Motion criteria are more difficult to set,
as they are a function of the external load (singular, continuous) and the target (safety, efficiency). For a
discussion reference is made to [14] and several PIANC documents (WG24 [15], 115 [16] and 212 ( WG in
progress)). For the current discussion, the limits are listed in Table 4.



Table 4 : Limiting criteria line forces and ship motion amplitude.

Type Limit Type Limit Type Limit
Line force | 50% MBL | Longitudinal motion | 0.50 m | Transversal motion | 0.50 m

5.2  Vlugmoor simulation configuration MC0

Explaining the behaviour of a moored ship under passing ship effects is out of the scope of the present
paper, refer to [17] for details. The ship motions of the moored vessel and line forces during the passage of an
identical vessel at 6 knots velocity and 2 beam passing distance, are given in Figure 10.
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Figure 10 : Vlugmoor simulation results configuration MCO ; Left : Ship motions; Right: Line forces

It can be clearly seen that for a typical passing ship event for a container ship, the line forces are limited,
and thus much lower than the limiting value of 50% MBL (70 tons). The motions however are larger and
exceed the set limits, with the longitudinal motions (x) being significantly higher than the transversal motions
(M, VF, ya). This motivates the choice to focus on longitudinal motions and efficiency parameters.

5.3 Summary of simulation results

The results of the VIugmoor simulations are shown in Table 5, for all mooring configurations depicted
in Table 3. The maximum relative line force (Fr.), longitudinal motion amplitude (xpos, [Xnee|) and efficiency
parameters are given. It has already been mentioned that the definition of ex, and ex, does account for
difference in line elasticity. For this reason a term is added, which expresses the difference in elasticity between
two cases, given in Eq. (8-10). It adds the ratio between the elasticities at a given force. Due to the non-
linearity, this ratio is a function of the force present in the lines. Therefore, an estimation needs to be made of
the expected forces. Here, Fexp is set equal to 25% MBL, based on the results in Table 5. For the combination
of linear main line (L2) and non-linear elastic tail (NL1), both contributions to the total elasticity of the system
need to be taken into account.

ELq
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Table 5 : Results Vlugmoor simulations : Line forces and longitudinal motions ;
Efficiency parameters exp, €xa and exp’ , €xa’-

COllfig Line type Fra [-] Xpos [m] IXnegl [m] €Xp €Xn eXp’ | exn’
MCO0 L1 0.29 1.40 1.28 4.60 3.44

MCO0 L2 +NL1 0.30 0.42 0.51 4.60 3.44 10.92 | 8.16
MC1 L1 0.29 1.34 1.23 4.50 3.47

MC2 L1 0.27 1.19 1.13 4.69 3.53

MC3 L1 0.30 1.26 1.11 4.61 4.15

MC4 L1 0.27 1.09 1.00 4.70 4.25

MC5 L1 0.24 0.93 0.87 5.64 4.60

MC6 L1 0.20 0.65 0.64 6.50 5.52

MC7 L2 +NL1 0.18 0.21 0.22 7.68 6.84 18.66 | 16.62

Table 5 shows how changes in mooring configuration impact the moored ship motions along the quay
wall. In the reference case (MCO0), the motion amplitude reaches 1.40 m, which is almost three times the limit
of 0.50 m. With small changes in the configuration (crossing lines), the motions can be lowered to 1.09 m
(MC4). By lowering the fore mooring deck (MC5), a significant decrease in motion is observed (from 1.40 m
to 0.93 m). The addition of two sets of spring lines (MC6) of course has the biggest impact, lowering the
motions to 0.65 m, which is already close to the target limit.

A change from medium stiff lines (L1) to a combination of very stiff HMPE (L2) and elastic forerunner
(NL1), reduces the motions to 0.51 m. Mooring lines can be changed to stiffer ones during maintenance, as
lines need to be replaced every few years, as long as compatibility between line diameter and winch drum is
ensured. In other conditions (e.g. waves), some additional elasticity might need to be added not to overload
the lines, by changing the length of the tail, at the cost of larger motions under passing ships. A last case, MC7,
shows the impact of a combined optimisation, leading to a motion amplitude of 0.22 m. This means that the
passing ship could even increase passing speed, without hampering the safety of the moored ship.

To conclude this section, the results are summarized in Figure 11, which gives the ratio of the motions
and the efficiency parameters, with respect to the reference case (MCO, line L1). The decrease in motions when
moving to a better (and more stiff) configuration is clearly shown. The ratio of the efficiencies is a good
measure to predict the effect on the ship motions, without need for dynamic mooring simulations. It also shows
that when comparing different line properties, the definition of ex,” and ex,’ yields good results in the motion
prediction. It is however not an exact prediction. This is of course due to the dynamic behaviour of the system,
which is a function of the magnitude and period of the external load as well. It is also seen that even when the
efficiency parameter is constant (exp) (MC3), the positive motion amplitude decreases (xpos). This is because
the ship initially moves less in the negative direction, thus building up less momentum to move in the positive
direction.
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04 * X9
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Figure 11 : Motion and efficiency ratios for all cases shown in Table 5.
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6 CONCLUSION

In this paper, three optimisation procedures for the mooring configuration of an ULCV moored at a quay
wall have been presented. The effect of these proposed changes has been evaluated by performing numerical
time domain simulations where the effect of an identical passing ship on the moored ship was modelled. In
these simulations, the surge motion of the moored ship always proves to be the critical parameter when
evaluating moored ship safety.

The results show that by optimising the spatial configuration of the mooring lines, a small decrease in
ship motions can be observed. Lowering the position of the fore mooring deck already leads to larger gains, as
the steepness of the lines decreases, increasing the line efficiency. Positioning two extra winches under the
funnel and bridge location shows a large decrease in longitudinal ship motions, as the number of fore and aft
springs is doubled. This comes with no loss of cargo space. The simulation with stiff lines in combination with
an elastic tail, shows a substantial decrease in motions. A combination of repositioning and adding winches,
as well as using stiffer lines, shows that the motions are much lower than in the reference case. This means
that an unsafe situation given the passing event at hand is turned into a safe situation, where the passing speed
could even be increased without exceeding safe mooring limits.

As OCIMF demands regarding line angles cannot be applied to the case where a ship is moored at a
quay wall, an alternative assessment tool, named efficiency parameters, is used to evaluate and optimise
mooring configurations. A comparison between motion prediction based on the efficiency parameters and
actual simulation results show fairly good agreement.
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